Field Level Encryption from the Java SDK
- Enterprise Edition
- Developer Preview
The Field Level Encryption library enables encryption and decryption of JSON fields.
The Field-Level Encryption library for Couchbase Java SDK is currently a pre-release. It is not supported, but is available for development and experiment. It is planned that a supported, full release version will be available later this year. Refer to the GitHub repo for the latest updates. |
Packaging
The Couchbase Java SDK uses the java-couchbase-encryption library to provide support for encryption and decryption of JSON fields. It includes cryptographic algorithms and keyrings you can use out of the box, and provides a framework for implementing your own crypto components.
This separation of the encryption library ensures that the SDK does not have a dependency upon an encryption library in general use — but it does mean you have to explicitly include this external dependency in your project configuration. Refer to the dependencies section. |
The Couchbase Java Field Level Encryption (FLE) uses entity annotations/JsonObject
methods to specify which field(s) to apply encryption and which algorithm to use.
Version 3.0.0-pre.1
of this library requires Couchbase Java SDK version 3.0.5
or later.
Maven Coordinates
<dependency>
<groupId>com.couchbase.client</groupId>
<artifactId>couchbase-encryption</artifactId>
<version>${version}</version>
</dependency>
Optional Dependencies
To reduce the footprint of this library, some of its dependencies are optional. Using certain features requires adding additional dependencies to your project.
HashiCorp Vault Transit integration requires [Spring Vault](https://docs.spring.io/spring-vault/docs/current/reference/html/):
<dependency>
<groupId>org.springframework.vault</groupId>
<artifactId>spring-vault-core</artifactId>
<version>2.2.2.RELEASE</version>
</dependency>
Configuration
To enable Field-Level Encryption, supply a CryptoManager
when configuring the Java SDK’s ClusterEnvironment
.
KeyStore javaKeyStore = KeyStore.getInstance("MyKeyStoreType");
FileInputStream fis = new java.io.FileInputStream("keyStoreName");
char[] password = {'a', 'b', 'c'};
javaKeyStore.load(fis, password);
Keyring keyring = new KeyStoreKeyring(javaKeyStore, keyName -> "swordfish");
// AES-256 authenticated with HMAC SHA-512. Requires a 64-byte key.
AeadAes256CbcHmacSha512Provider provider = AeadAes256CbcHmacSha512Provider.builder()
.keyring(keyring)
.build();
CryptoManager cryptoManager = DefaultCryptoManager.builder()
.decrypter(provider.decrypter())
.defaultEncrypter(provider.encrypterForKey("myKey"))
.build();
ClusterEnvironment env = ClusterEnvironment.builder()
.cryptoManager(cryptoManager)
.build();
Cluster cluster = Cluster.connect("localhost",
ClusterOptions.clusterOptions("username", "password")
.environment(env));
Usage
Two modes of operation are available:
-
Transparent encryption/decryption during Jackson data binding.
-
Manual field editing using
JsonObjectCrypto
.
Data Binding Example
Sensitive fields of your POJOs can be annotated with @Encrypted
.
Let’s use this class as an example:
public class Employee {
@Encrypted
private boolean replicant;
// alternatively you could annotate the getter or setter
public boolean isReplicant() {
return replicant;
}
public void setReplicant(boolean replicant) {
this.replicant = replicant;
}
}
Now let’s create an employee record:
Collection collection = cluster.bucket("myBucket")
.defaultCollection();
Employee employee = new Employee();
employee.setReplicant(true);
collection.upsert("employee:1234", employee);
You can get the document as a JsonObject
to verify the field was encrypted:
JsonObject encrypted = collection.get("employee:1234")
.contentAsObject();
System.out.println(encrypted);
Because contentAsObject()
does not decrypt anything, the expected output is something like:
{
"encrypted$replicant": {
"alg": "AEAD_AES_256_CBC_HMAC_SHA512",
"ciphertext": "xwcxyUyZ.....",
"kid": "myKey"
}
}
Now let’s read the employee record using data binding:
Employee readItBack = collection.get("employee:1234")
.contentAs(Employee.class);
System.out.println(readItBack.isReplicant());
This prints true
.
Using a custom ObjectMapper
The code that enables encryption/decryption during data binding is packaged as a Jackson module called EncryptionModule
.
You can register this module with any Jackson ObjectMapper
.
You’ll need to do this if you want to supply your own customized ObjectMapper for the Java SDK to use when serializing documents. Here’s how to configure the cluster environment to use a custom JSON serializer backed by your own ObjectMapper with support for Field-Level Encryption:
// CryptoManager cryptoManager = createMyCryptoManager();
KeyStore javaKeyStore = KeyStore.getInstance("MyKeyStoreType");
FileInputStream fis = new java.io.FileInputStream("keyStoreName");
char[] ksPassword = {'a', 'b', 'c'};
javaKeyStore.load(fis, ksPassword);
Keyring keyring = new KeyStoreKeyring(javaKeyStore, keyName -> "swordfish");
// AES-256 authenticated with HMAC SHA-512. Requires a 64-byte key.
AeadAes256CbcHmacSha512Provider provider = AeadAes256CbcHmacSha512Provider.builder()
.keyring(keyring)
.build();
CryptoManager cryptoManager = DefaultCryptoManager.builder()
.decrypter(provider.decrypter())
.defaultEncrypter(provider.encrypterForKey("myKey"))
.build();
ObjectMapper mapper = new ObjectMapper();
mapper.registerModule(new JsonValueModule()); // for JsonObject
mapper.registerModule(new EncryptionModule(cryptoManager));
// Here you can register more modules, add mixins, enable features, etc.
ClusterEnvironment env = ClusterEnvironment.builder()
.cryptoManager(cryptoManager)
.jsonSerializer(JacksonJsonSerializer.create(mapper))
.build();
Cluster cluster = Cluster.connect(connectionString,
ClusterOptions.clusterOptions(username, password)
.environment(env));
JsonObjectCrypto
If you need more control of which fields get decrypted, or if you prefer working with the Couchbase JsonObject
tree model,
you can use a JsonObjectCrypto
instance to read and write encrypted field values of a JsonObject
.
Collection collection = cluster.bucket("myBucket").defaultCollection();
JsonObject document = JsonObject.create();
JsonObjectCrypto crypto = document.crypto(collection);
crypto.put("locationOfBuriedTreasure", "Between palm trees");
// This displays the encrypted form of the field
System.out.println(document);
collection.upsert("treasureMap", document);
JsonObject readItBack = collection.get("treasureMap").contentAsObject();
JsonObjectCrypto readItBackCrypto = crypto.withObject(readItBack);
System.out.println(readItBackCrypto.getString("locationOfBuriedTreasure"));
Creating Encryption Keys
The AEAD_AES_256_CBC_HMAC_SHA512 algortihm included in this library uses encryption keys that are 64 bytes long.
Here’s an example that shows how to create a Java key store file containing a suitable encryption key:
KeyStore keyStore = KeyStore.getInstance("JCEKS");
keyStore.load(null); // initialize new empty key store
// Generate 64 random bytes
SecureRandom random = new SecureRandom();
byte[] keyBytes = new byte[64];
random.nextBytes(keyBytes);
// Add a new key called "my-key" to the key store
KeyStoreKeyring.setSecretKey(keyStore, "my-key", keyBytes,
"protection-password".toCharArray());
// Write the key store to disk
try (OutputStream os = new FileOutputStream("MyKeystoreFile.jceks")) {
keyStore.store(os, "integrity-password".toCharArray());
}
And here’s how to use that file to create a Keyring
for use with Couchbase Field-Level Encryption:
KeyStore keyStore = KeyStore.getInstance("JCEKS");
try (InputStream is = new FileInputStream("MyKeystoreFile.jceks")) {
keyStore.load(is, "integrity-password".toCharArray());
}
KeyStoreKeyring keyring = new KeyStoreKeyring(
keyStore, keyName -> "protection-password");